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Abstract

Regularised traces on classical pseudodifferential operators are extended to tensor products of classical pseudodifferential
operators via a (second) quantisation procedure. Whereas ordinary ζ -regularised traces are not generally expected to be local,
using techniques borrowed from Connes and Moscovici [A. Connes, H. Moscovici, The local index formula in noncommutative
geometry, Geom. Funct. Anal. 5 (2) (1995) 174–243], Higson [N. Higson, The residue index theorem of Connes and Moscovici,
in: Clay Mathematics Proceedings, 2004, http://www.math.psu.edu/higson/ResearchPapers.html], we show that if Q has scalar
leading symbol, higher quantised ζ -regularised traces are local since they can be expressed as a finite linear combination of
noncommutative residues. Just as ordinary ζ -regularised traces, they present anomalies (Hochschild coboundary, dependence on
the weight Q), which for quantised ζ -regularised traces of level n, are roughly speaking finite linear combinations of quantised
regularised traces of level n + 1. As a result, anomalies are local for any non negative n, which yields back as a particular case the
fact that ordinary ζ -regularised traces present local anomalies.1
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0. Introduction

Ordinary ζ -regularised traces have been the object of many investigations (see e.g. the works of Grubb and Seeley
[12], Kontsevich and Vishik [17], Melrose and Nistor [20], Lesch [18], and more recent works by Grubb [9–11], as
well as recent papers by Scott and the author [26,27]). Regularised traces naturally arise in the study of variations of
partition functions in quantum field theory and provide useful tools in the context of anomalies (see e.g. [4,19,5]).
They also occur in the framework of index theory, specifically in the local index formula of Connes and Moscovici
(from whom we borrow some of the techniques used in this paper) in noncommutative geometry [7], in the fractional
index theory of Mathai, Melrose and Singer [21] as well as in the family index theorem see e.g. [29,26,22].

Whereas regularised traces are not expected to be local [27], their variations are. Viewing regularised traces as
quantised regularised traces, namely as higher order cochains on the algebra of classical pseudo-differential operators,
sheds light on this fact, combining two observations:

1. variations of regularised traces of level n are regularised traces of level n + 1,
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1 This work is partially based on [S. Paycha, Weighted trace cochains; A geometric setup for anomalies, Max Planck Institute, 2005. Preprint]
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2. quantised traces of positive level (i.e. positive order cochains) are local.

The well-known locality property of anomalies for ordinary ζ -regularised traces [17,20,6,5,23] then arises as a
consequence of the locality of quantised traces of positive level.

Whereas ζ -regularisation and heat-kernel regularisation lead to the same regularised traces only on operators with
vanishing noncommutative residue, higher quantised ζ -regularised traces coincide with higher quantised heat-kernel
regularised traces on the whole algebra of classical pseudodifferential operators for high enough quantum level n.
Heat-kernel regularised traces naturally arise from JLO type cochains.2 Their analogues in the noncommutative
context arise in the work of Connes and Moscovici [7] (later reformulated by Higson [14]) on the local formula
for the Connes–Chern character.

Let us briefly describe the “second quantisation” procedure for ζ -regularised traces. Let C•(M, E) :=

⊕
∞

n=0 Cn(M, E) with Cn(M, E) = ⊗
n+1 C`(M, E) be the space of chains associated to the algebra C`(M, E) of

classical pseudodifferential operators acting on smooth sections of a vector bundle E over a closed manifold M .
The resolvent R(λ, Q) = (λ − Q)−1 of an operator Q ∈ C`(M, E) can be quantised to R•(λ, Q + θ) acting on

C•(M, E), θ being an insertion map θ(A) = A. We set R0(λ, Q + θ) = R(λ, Q) and for n > 0

Rn(λ, Q + θ) : Cn−1(M, E) → C`(M, E)
A1 ⊗ · · · ⊗ An 7→ R(λ, Q)A1 · · · R(λ, Q)An R(λ, Q).

In Section 2 we construct quantised functionals f (Q + θ) using Cauchy integrals (see Theorem 1)

f•(Q + θ) =
1

2iπ

∫
f (λ) R•(λ, Q + θ)

along an adequately chosen contour. In Section 3, we investigate the behaviour of R•(λ, Q+θ) under the adjoint action
A 7→ [C, A] of C`(M, E) and under a variation of the weight, from which we derive the corresponding behaviour of
the quantised functionals f (Q + θ).

Quantised functionals are the cornerstones for the quantisation of ζ -regularised traces.
Let us first recall the usual ζ -regularisation procedure. If Q is elliptic with spectral cut, it has well defined complex

powers defined by Cauchy integrals. Given an operator A ∈ C`(M, E) and a complex number z with large enough
real part, the ζ -regularised operator RQ,ζ (A)(z) := A Q−z is trace class (we assume Q is invertible for simplicity)
and the map z 7→ tr(A Q−z) extends to a meromorphic function z 7→ ζ(A, Q, z) |mer with simple pole at z = 0 (see
e.g. [17]). Its finite part at z = 0 gives rise to a linear map trQ

: C`(M, E) → C which we call the Q-weighted trace.
In general, the finite part trQ(A) is not expected to be local3 in contrast to the complex residue at z = 0, which is
proportional to the noncommutative residue [33].

Replacing the resolvent R(λ, Q) by the quantised resolvent R•(λ, Q + θ) boils down to substituting the quantised
complex powers (Q + θ)−z to ordinary complex powers Q−z and leads to a quantised zeta regularisationRQ+θ,ζ on
C•(M, E) defined in terms of the quantised resolvent by

RQ+θ,ζ
n (A0 ⊗ A1 ⊗ · · · ⊗ An)(z) =

1
2iπ

∫
Γ
λ−z A0 Rn(λ, Q + θ)(A1 ⊗ · · · ⊗ An). (1)

Using techniques inspired from [14,7], when Q has scalar leading symbol, we show that for any Ai ∈ C`(M, E), i =

0, . . . , n the operator RQ+θ,ζ
n (A0 ⊗ A1 ⊗ · · · ⊗ An)(z) is trace class for z with large enough real part. Furthermore,

the map z 7→ tr(RQ,ζ
n (A0 ⊗ A1 ⊗ · · · ⊗ An))(z) extends to a meromorphic function with simple pole at z = 0. It is

holomorphic at z = 0 when n 6= 0 (see Theorem 2) and we call the (second) quantised weighted ζ -trace (or quantised
Q-weighted trace) of the chain A0⊗· · ·⊗An its value at z = 0 which we denote by trQ+θ

n (A0⊗· · ·⊗An). In contrast to
the ordinary Q-weighted trace, we show that whenever Q has scalar leading symbol, quantised weighted traces trQ+θ

n
are local for any positive integer n. We provide a local formula expressing them as a finite linear combination of
noncommutative residues (see Theorem 3). When transposed to the noncommutative context, the locality for positive

2 Named after Jaffe, Lesniewski and Osterwalder [16].
3 It actually is local if A is a differential operator. In general, it is made of a local piece involving the noncommutative residue and a global piece

involving a finite part integral over all the cotangent space [27].
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integer n shown here underlies that of the Connes–Moscovici formula for the Connes–Chern character in the case of
classical pseudodifferential operators.

When Q has positive leading symbol, if instead of ζ -regularisation we implement heat-kernel regularisation (thus
replacing Q−z by e−εQ for some positive parameter ε), a similar construction gives rise to JLO type cochains. The
heat-kernel quantised traces one obtains this way (taking finite parts as ε tends to 0) coincide for large quantum
level with the quantised weighted trace described previously (see Theorem 3). This again constrasts with the 0 level
case. Indeed, the finite part of the heat-kernel regularised trace of an operator A ∈ C`(M, E) only coincides with its
weighted trace when the operator A has vanishing residue.

Quantised Q-weighted traces are not generally closed in the Hochschild cohomology. When Q has scalar leading
symbol, we show that their Hochschild coboundary is local as a finite linear combination of noncommutative residues
(see Theorem 5). For even cochains, this follows from the fact that the Hochschild coboundary of a quantised
regularised trace of level 2p is a linear combination of quantised regularised traces of level 2p+1 (see Proposition 7).4

We also express the variation of such quantised weighted traces as the weight varies in terms of a linear combination
of noncommutative residues. This locality is again a consequence of the fact that the variation of a quantised weighted
trace of weight n is a linear combination of weighted traces of weight n + 1 (see Theorem 6) combined with the
locality of quantised regularised traces of any positive level.

Adapting these constructions to the geometric setup of the index theorem for families along the lines of [26,22], Q
can be replaced by a pseudodifferential operator-valued even form Q, the exterior diffferentiation by a superconnexion
A and the pseudodifferential operators Ai by pseudodifferential operator-valued forms αi (the insertion map θ for
pseudodifferential operators is replaced by an insertion map Θ for pseudodifferential valued forms) and one gets a
local expression for the exterior differential (d trQ+Θ

n ) of quantised regularised traces (see Theorem 7).
When A is a superconnection adapted to the zero degree component Q = Q[0], replacing Q by A2 in the above

expression yields the expected covariance property for quantised A2-weighted traces (see Corollary 11).
To sum up, local formulae for the two types of anomalies mentioned above, lack of traciality and dependence on the

weight of the quantised regularised traces, are obtained in the same manner, namely as a combination of the following
basic facts:

1. Anomalies for quantised regularised traces of level n are linear combinations of quantised regularised traces of
level n + 1.5

2. Quantised regularised traces of any positive level are local.

As mentioned above, quantised regularised traces are tools commonly used in noncommutative geometry; some of
the above constructions inspired from techniques used in noncommutative geometry generalise to a noncommutative
context. However we feel that even in the present classical setup of classical pseudodifferential operators, the language
of quantised regularised traces is well suited to keeping track of anomalies. The locality of quantised regularised traces
(of any positive level) shown in this paper somewhat clarifies why one is to expect trace anomalies to be local.

1. Prerequisites on classical pseudodifferential symbols and operators

We briefly recall some notions concerning symbols and pseudodifferential operators and fix the corresponding
notations. Classical references for the polyhomogeneous symbol calculus are e.g. [8,12,15,31,32].

1.1. Classical symbols and operators

In the sequel, E denotes a smooth Hermitian vector bundle based on some closed Riemannian manifold M . The
space C∞(M, E) of smooth sections of E is endowed with the inner product 〈ψ, φ〉 :=

∫
M dµ(x)〈ψ(x), φ(x)〉x

induced by the Hermitian structure 〈·, ·〉x on the fibre over x ∈ M and the Riemannian measure µ on M .
Given an open subset U of Rn and an auxiliary (finite-dimensional) normed vector space V , the set of symbols

Sr (U, V ) on U of order r ∈ R consists of those functions σ(x, ξ) in C∞(T ∗U,End(V )) such that ∂µx ∂νξ σ(x, ξ)

4 This fact holds only in the even case n = 2p, but the locality still holds in the odd case n = 2p + 1.
5 Here we have left aside the Hochschild coboundary on odd cochains (see the previous footnote).
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is O((1 + |ξ |)r−|ν|) for all multi-indices µ, ν, uniformly in ξ , and, on compact subsets of U , uniformly in x .
We set S(U, V ) :=

⋃
r∈R Sr (U, V ) and S−∞(U, V ) :=

⋂
r∈R Sr (U, V ). A classical (polyhomogeneous) symbol

of order α ∈ C means a function σ(x, ξ) in C∞(T ∗U,End(V )) such that for each N ∈ N and each integer
0 ≤ j ≤ N there exists σα− j ∈ C∞(T ∗U,End(V )) which is homogeneous in ξ of degree α − j for |ξ | ≥ 1, so
σα− j (x, tξ) = tα− j σα− j (x, ξ) for t ≥ 1, |ξ | ≥ 1, and a symbol σ(N ) ∈ S Re(α)−N−1(U, V ) such that

σ(x, ξ) =

N∑
j=0

σα− j (x, ξ)+ σ(N )(x, ξ) ∀(x, ξ) ∈ T ∗U. (2)

We then write σ(x, ξ) ∼
∑

∞

j=0 σα− j (x, ξ). Let CS(U, V ) denote the class of classical symbols on U with values in
V and let CSα(U, V ) denote the subset of classical symbols of order α.

When V = C, we write Sr (U ), CSα(U ), and so forth.
A pseudodifferential operator (ΨDO), which for a given atlas on M has a classical symbol in the local coordinates

defined by each chart is called classical. Let C`(M, E) denote the algebra of classical ΨDOs acting on C∞(M, E)
and let E``(M, E) be the subalgebra of elliptic operators. For any α ∈ C let C`α(M, E), resp. E``α(M, E), denote
the subset of operators in C`(M, E), resp. E``(M, E), of order α. With R+ = (0,∞), set E``ord>0(M, E) :=⋃

r∈R+
E``r (M, E). For a subset I of C we set C`I (M, E) :=

⋃
α∈I C`α(M, E).

1.2. The noncommutative residue and the canonical trace

The local residue density on polyhomogeneous symbols acts as an obstruction to the finite part integral of a classical
symbol defining a global density on M and measures the anomalous contribution to the Laurent coefficients at the
poles of the finite part integral when evaluated on holomorphic families of symbols.

Definition 1. Given an open subset U ⊂ Rn and a point x ∈ U , the local noncommutative residue is defined for
σ ∈ CSα(U, V ) by

resx (σ ) =

∫
S∗

x U
trx (σ−n(x, ξ))d̄Sξ,

where d̄Sξ := (2π)−n dSξ with dSξ the sphere measure on S∗
x U , the unit sphere in the cotangent space T ∗

x U to U at
point x .

Guillemin [13] and Wodzicki [33] showed the following remarkable property.

Proposition 1. Let A ∈ C`α(M, E) be a classical ΨDO represented in a local coordinate chart U by σ ∈

CSα(U, V ). Then resx (σ ) dx determines a global density on M which defines the projectively unique trace on
C`(M, E):

res(A) :=

∫
M

resx (σ ) dx =

∫
M

dx
∫

S∗
x M

trx (σ−n(x, ξ)) d̄Sξ, (3)

known as the noncommutative residue (and also called the Guillemin–Wodzicki residue).

The terminology refers to the trace property; if the manifold M is connected and has dimension larger than 1, then up
to a scalar multiple, Eq. (3) defines on C`(M, E) the unique linear functional vanishing on commutators

res([A, B]) = 0, A, B ∈ C`(M, E).

It also follows from its definition that the residue trace vanishes on operators of order <−n and on non-integer order
operators.

On the other hand, it was observed by Kontsevich and Vishik [17] that the usual L2-trace on ΨDOs of real order
<−n extends to a functional on the space C`C\Z(M, E) of ΨDOs of non-integer order and vanishes on commutators
of non-integer order. This functional uses the following extension of the ordinary Lebesgue integral.
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Definition 2. The finite-part integral of σ(x, ·) with σ ∈ CSα(U ) and x ∈ U is defined as the constant term in the
asymptotic expansion when R → ∞ of

∫
B∗

x (0,R)
σ(x, ξ) d̄ξ :

−

∫
T ∗

x U
σ(x, ξ) d̄ξ := fpR→∞

∫
B∗

x (0,R)
σ(x, ξ) d̄ξ. (4)

Here B∗
x (0, R) is the cotangent ball of radius R in T ∗

x U and d̄ξ =
1

(2π)n dξ the normalised Lebesgue measure on T ∗
x U .

Whenever a classical pseudodifferential operator A has non integer order, so has its symbol σA, and
(−
∫

T ∗
x U trx (σA(x, ξ))d̄ξ) dx defines a global density. Here trx denotes the fibrewise trace over x ∈ M . The canonical

trace can therefore be defined on C`C\Z(M, E) without ambiguity.

Definition 3. For a pseudodifferential operator A ∈ C`C\Z(M, E) the canonical trace is defined by

TR(A) :=

∫
M

dx−

∫
T ∗

x U
trx (σA(x, ξ))d̄ξ.

It coincides with the usual trace on ΨDOs of order <−n.

On commutators the canonical trace has the following vanishing property, providing some justification for its name.

Proposition 2. Let A ∈ C`a,k(M, E), B ∈ C`b,l(M, E). If α+β 6∈ [−n,∞)∩Z, then the canonical trace is defined
on the commutator [A, B] and is equal to zero,

TR([A, B]) = 0.

1.3. Cauchy integrals

An operator Q ∈ E``(M, E) of positive order is called admissible if there is a proper subsector of C with vertex
0 which contains the spectrum of the leading symbol σL(Q) of Q. Then there is a half line Lφ = {reiφ, r > 0} (a
spectral cut) with vertex 0 and determined by an Agmon angle φ which does not intersect the spectrum of Q. Let
E``adm

ord>0(M, E) denote the subset of admissible operators in E``(M, E) with positive order.
Let Q ∈ E``adm

ord>0(M, E) with spectral cut Lφ . Let f be a complex valued continuous function on the contour Cφ

around the spectrum of Q and such that ρ 7→
f (ρeiφ)
ρ

lies in L1(]1,∞[).
Recall that an operator R ∈ C`(M, E) of order r acting on smooth sections of π : E → M induces a bounded

map from H s(M, E) to H s−r (M, E) for any s ∈ R. For R ∈ C`(M, E) and s, t ∈ R we define the operator norms
(whenever they are finite)

‖R‖s,t = sup
u 6=0

‖Ru‖t

‖u‖s
, ‖R‖

(s)
:= ‖R‖s,s .

It follows from the theory of elliptic operators on closed manifolds that in a neighborhood of infinity (see [8] Lemma
1.7.3):

‖R(λ, Q)‖(s) = O(|λ|−1), (5)

i.e.

∀s ∈ R, ∃c(s) ∈ R+, ∃Cs ∈ R+ such that ‖R(λ, Q)‖(s) ≤ Cs .

On the other hand, Eq. (5) and the assumption on f imply that the Cauchy integral

f (Q) =
1

2iπ

∫
Cφ

f (λ)R(λ, Q) dλ

converges in each Sobolev norm ‖ · ‖
(s). Here Cφ = C1,φ,r ∪ C2,φ,r ∪ C3,φ,r . The positive real number r is chosen

sufficiently small and C1,θ,r = {λ = |λ|eiφ
| +∞ > |λ| ≥ r}, C2,φ,r = {λ = reiψ

| φ ≥ ψ ≥ φ − 2π} and
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C3,φ,r = {λ = |λ|ei(φ−2π)
| r ≤ |λ| < +∞}. Here λz

= exp(z log λ) where log λ = log |λ| + iφ on C1,φ,r and
log λ = log |λ| + i(θ − 2π) on C3,φ,r .

Remark 1. The definition of f (Q) depends in general on the choice of φ and should therefore carry a subscript φ
writing fφ(Q); when there is no ambiguity in the choice of spectral cut, we may omit it in order to simplify notations.

Example 1. The function f (z) = λ−z with Re z > 0 satisfies the integrability assumption so that we can define
complex powers of Q by the Cauchy integral:

Q−z
φ =

i
2π

∫
Cφ
λ−z(Q − λI )−1dλ (6)

which converges in norm ‖ · ‖
(s) for any s ∈ R.

For k ∈ N the complex power Q−z is then extended to the half plane Re z > −k via the relation [30] (see also
[31])

Qk Q−z−k
φ = Q−z

φ .

For z = 0

Q0
φ = I − ΠQ

where ΠQ is the smoothing operator projection

ΠQ =
i

2π

∫
C0

(Q − λI )−1dλ

with C0 a contour containing the origin but no other element of spec(Q), with range the generalised kernel
{ψ ∈ C∞(M, E) | QNψ = 0 for some N ∈ N} of Q. (See [33], presented recently in [25].)

Example 2. The function f (λ) = e−tλ on R+ also has the required integrality property on C0. Thus, if Q is a non
negative self-adjoint operator, we can define the corresponding heat operator by a Cauchy integral

e−t Q
=

1
2iπ

∫
C0

e−λt R(λ, Q)dλ

for any t > 0.

2. Quantised Cauchy integrals; first properties

The following presentation is inspired by [28] from which we borrow the notation θ . We introduce a quantised
resolvent associated with a classical pseudodifferential operator Q and describe it perturbatively. It acts on the space
of chains C`•(M, E) =

⊗
•+1 C`(M, E) built from the algebra C`(M, E) and coincides with the ordinary resolvent

on C0(M, E) = C`(M, E). This quantised resolvent leads to quantised functionals f•(Q) of Q obtained from a
perturbative expansion in θ of f•(Q + θ).

2.1. Quantised resolvents

For any λ outside the spectrum of some operator Q ∈ C`(M, E), the resolvent R(λ, Q) := (λ − Q)−1 is
well defined. Let θ : C`(M, E) → C`(M, E) be the identity map which we use as an insertion operator then
Q+θ(A) = Q+A. We have (λ−Q)(λ−Q−θ)−1

= (λ−Q−θ)(λ−Q−θ)−1
+θ(λ−Q−θ)−1

= 1+θ(λ−Q−θ)−1,
from which it follows that

(λ− Q − θ)−1
= (λ− Q)−1

+ (λ− Q)−1θ(λ− Q − θ)−1.

By induction we get

(λ− Q − θ)−1
=

n∑
k=0

(λ− Q)−1θ(λ− Q)−1
· · · θ(λ− Q)−1θ(λ− Q)−1

+ Sn(Q, θ, λ),
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where Sn vanishes on Ck(M, E) for k ≤ n. Here θ(λ − Q)−1 arises k times in the k-th term of the sum and by
convention the k = 0 term reduces to (λ− Q)−1.

On each Cn(M, E) the expression (λ − Q − θ)−1 therefore coincides with
∑n

k=0(λ − Q)−1θ(λ − Q)−1
· · · (λ −

Q)−1θ(λ− Q)−1, which leads to the following definition.

Definition 4. From the resolvent R(λ, Q) := (λ− Q)−1 of Q one defines the quantised resolvent of Q on C•(M, E)
by6

R•(λ, Q + θ) := (λ− (Q + θ))−1

=

∞∑
n=0

R(λ, Q) θ · · · R(λ, Q) θ R(λ, Q) (θ arises n times).

It induces a map on C•(M, E) defined byR0(λ, Q) = R(λ, Q) and for any positive integer n by

Rn(λ, Q + θ) : Cn−1(M, E) → C`(M, E)
A1 ⊗ · · · ⊗ An 7→ R(λ, Q)A1 · · · R(λ, Q)An R(λ, Q).

Remark 2. One can replace θ by some expression h(θ) in which case the Ai ’s would be replaced by h(Ai )’s. As
mentioned in Remark 7, we need to choose h(Ai ) = [X, Ai ] to set up a relationship between the constructions to
follow and the construction of the Chern character in cyclic cohomology.

Let us introduce some notation which will be useful for what follows.

Definition 5. For A in Cl(M, E), we set A(0)Q = A and for any j ∈ N:

A( j)
Q := ad j

Q(A), where adQ(B) = [Q, B],

so that A( j+1)
Q = adQ(A( j)) = [Q, A( j)

].

We shall often drop the subscript Q, writing A( j) instead of A( j)
Q .

The subsequent observation explains the reason for choosing the leading symbol of Q scalar in what follows.

Remark 3. If Q has scalar leading symbol then A( j) has order a + j (q − 1) where a denotes the order of A and q
the order of Q.

We introduce further notations borrowed from [14]. Let T ∈ C`(M, E) and Tk, k ∈ N be operators in C`(M, E) with
decreasing order in k. Then

T '

∑
k≥0

Tk ⇐⇒ ∀N ∈ N, ∃K (N ) T −

K (N )∑
k=0

Tk ∈ C`−N (M, E). (7)

The following result that we quote from [14] (see the proof of Proposition 4.14) is a cornerstone to proving the
existence of the quantised weighted traces as well as their locality.

Lemma 1 (See [14] Lemma 4.20). Let Q ∈ C`(M, E) be an admissible elliptic operator with spectral cut Lφ and
scalar leading symbol. For λ ∈ Cφ and for any A ∈ C`(M, E) and any non negative integer h

(λ− Q)−h A '

∑
k≥0

(h + k − 1)!
(h − 1)!k!

A(k)(λ− Q)−h−k .

6 Although a priori infinite, as we saw previously, this sum is in fact a finite sum on each of the Cn(M, E).
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Proof. The case h = 1 follows from iterating the following identities

[(λ− Q)−1, A] = (λ− Q)−1
[Q, A] (λ− Q)−1

= [(λ− Q)−1, [Q, A]] (λ− Q)−1
+ [Q, A] (λ− Q)−2

= [Q, A](λ− Q)−2
+ A(2) (λ− Q)−3

+ [(λ− Q)−1, A(2)](λ− Q)−1

= [Q, A](λ− Q)−2
+ A(2) (λ− Q)−3

+ A(3)(λ− Q)−4
+ (λ− Q)−1 A(4) (λ− Q)−1

= · · ·

'

∑
k≥1

A(k)(λ− Q)−(k+1).

The general case h > 1 then follows using a Cauchy integral:

L−h
=

1
2iπ

∫
Cφ
µ−h(µ− L)−1dµ

applied to L := λ− Q combined with integration by parts. Namely,

[(λ− Q)−h, A] =
1

2iπ

∫
Cφ
µ−h

[(µ− L)−1, A]dµ

'
1

2iπ

∫
Cφ
µ−h

∑
k≥1

(−1)k A(k)(µ− L)−(k+1) dµ

'
1

2iπ

∑
k≥1

(−1)k A(k)
∫

Cφ
µ−h(µ− L)−(k+1) dµ

'
1

2iπ

∑
k≥1

(h + k − 1)!
(h − 1)!k!

A(k)
∫

Cφ
µ−h−k(µ− L)−1 dµ

'

∑
k≥1

(h + k − 1)!
(h − 1)!k!

A(k)(λ− Q)−h−k,

where we have used the fact that ad j
L(A) = (−1) j A( j), hence the result. �

2.2. Cauchy integrals on higher order PDO chains

Let Q ∈ E``adm
ord>0(M, E) have spectral cut Lφ and positive order q. In a similar way as we defined f (Q)we define

the quantised version f•(Q + θ) via a Cauchy integral using the quantised resolvent. It is obtained from a perturbative
expansion in θ of fθ (Q + θ) which boils down to a perturbative expansion in θ of R(λ, Q + θ) inside the Cauchy
integral.

Proposition 3. Let f be a complex valued function defined on the contour Cφ ⊂ C around the spectrum of Q and

such that ρ 7→
f (ρeiφ)

ρ j lies in L1(]1,∞[) for any j ∈ N. Then, for any integer n and for any A1, . . . , An ∈ C`(M, E)
the Cauchy integral

1
2iπ

∫
Cφ

f (λ)Rn(λ, Q + θ)(A1, . . . , An)dλ =
1

2iπ

∫
f (λ)R(λ, Q)A1 · · · An−1 R(λ, Q)An R(λ, Q)dλ

converges in any Sobolev norm ‖ · ‖
(s), s ∈ R.

Proof. Since ‖A B‖
(s)

≤ ‖A‖
(s)

‖B‖
(s), for any A1, . . . , An ∈ C`(M, E) of order a1, . . . , an respectively,

‖R(λ, Q)A1 · · · R(λ, Q)An R(λ, Q)‖(s) ≤

n∏
i=1

‖Ai‖
(s)(‖R(λ, Q)‖(s))n+1

= O(λ−(n+1)).

Under the assumptions on f , the convergence in any Sobolev norm ‖ · ‖
(s), s ∈ R of the Cauchy integral then

follows. �
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We therefore set the following definition:

Definition 6. Let f be a complex valued function defined on the contour Cφ ⊂ C around the spectrum of Q and such

that ρ 7→
f (ρeiφ)

ρ j lies in L1(]1,∞[) for any j ∈ N. The quantised Cauchy integral is defined by:

f•(Q + θ) :=
1

2iπ

∫
Cφ

f (λ)R•(λ, Q + θ) dλ

=
1

2iπ

∫
f (λ)R(λ, Q)θ · · · θR(λ, Q)θR(λ, Q)

where the expression θR(λ, Q) arises n times. In particular, f0(Q) = f (Q) and for any positive integer n we have

fn(Q + θ)(A1 ⊗ · · · ⊗ An) =
1

2iπ

∫
Cφ

dλ f (λ)Rn(λ, Q + θ)(A1 ⊗ · · · ⊗ An)

=
1

2iπ

∫
Cφ

dλ f (λ) R(λ, Q)A1 · · · R(λ, Q)An R(λ, Q)

for all A1 ⊗ · · · ⊗ An ∈ Cn(M, E).

Remark 4. f•(Q + θ) induces a map:

C•(M, E) → C`(M, E)

A0 ⊗ · · · ⊗ An 7→ (θ fn(Q + θ))(A0 ⊗ · · · ⊗ An)

= A0 fn(Q + θ)(A1 ⊗ · · · ⊗ An).

Example 3. For f (λ) = λ−z , and Re(z) > 0 the assumptions of the proposition are satisfied so that (Q + θ)−z is
well defined. This definition extends to Re(z) > −k as usual.

We now slightly weaken the definition ' introduced above. Let T ∈ C`(M, E) and Tk, k ∈ N be operators in
C`(M, E) with decreasing order in k. Then

T ∼

∑
k≥0

Tk ⇐⇒ T C−1
'

∑
k≥0

Tk C−1 (8)

for some invertible C ∈ C`(M, E).

Theorem 1. Let f be a complex valued function defined on the contour Cφ ⊂ C around the spectrum of Q such that

ρ 7→
f (ρeiφ)

ρ j lies in L1(]1,∞[) for any j ∈ N. In particular, for any n ∈ N, and for any multiindex (k1, . . . , kn) ∈ Nn ,

f (|k|+n)(Q) is defined by a Cauchy integral:

f (|k|+n)(Q) =
(|k| + n)!

2iπ

∫
Cφ

f (λ)(λ− Q)−|k|−n−1

which converges in the ‖ · ‖
(s) norms for all s ∈ R. Here |k| = k1 + · · · + kn .

We assume that Q has scalar leading symbol, that f (|k|+n)(Q) lies in C`(M, E) and that |k|(q − 1) +

o( f (|k|+n)(Q)C−1) decreases for some fixed invertible operator C ∈ C`(M, E) as |k| increases, where o(A) denotes
the order of A. Then for any A1, . . . , An ∈ C`(M, E) the operator A(k1)

1 · · · A(kn)
n f (|k|+n−1)(Q) ∈ C`(M, E) has

decreasing order in |k| and

f•(Q + θ)(A1 ⊗ · · · ⊗ An) ∼

∑
|k|≥0

c(k)

(|k| + n)!
A(k1)

1 · · · A(kn)
n f (|k|+n)(Q),

where for a multiindex k = (k1, . . . , kn) and n = 1 we set c(k1) = 1, for n ≥ 2

c(k1, . . . , kn) =
(k1 + · · · + kn + n − 1)!

k1! · · · kn !(k1 + 1)(k1 + k2 + 2) · · · (k1 + · · · + kn−1 + n − 1)
.
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Remark 5. When n = 1 we get back that f (Q) A ∼
∑

k≥0
A(k) f (k+1)(Q)

(k+1)! .

Proof. Applying Lemma 1 to hi = k1 + · · · + ki + i + 1 with i = 1, . . . , n − 1 we find

R•(λ, Q + θ)(A1 ⊗ · · · ⊗ An) = (λ− Q)−1 A1 · · · (λ− Q)−1 An (λ− Q)−1

'

∑
k1≥0

A(k1)
1 (λ− Q)−2−k1 A2 · · · (λ− Q)−1 An (λ− Q)−1

'

∑
k1≥0

A(k1)
1

∑
k2≥0

(k1 + k2 + 1)!
(k1 + 1)!k2!

A(k2)
2 (λ− Q)−3−k1−k2

× A3 · · · (λ− Q)−1 An (λ− Q)−1

'

∑
k1≥0

A(k1)
1

∑
k2≥0

(k1 + k2 + 1)!
(k1 + 1)!k2!

A(k2)
2

∑
k3≥0

(k1 + k2 + k3 + 2)!
(k1 + k2 + 2)!k3!

× A(k3)
3 (λ− Q)−4−k1−k2−k3 A4 · · · (λ− Q)−1 An (λ− Q)−1

'

∑
|k|≥0

(k1 + k2 + 1)! · · · (k1 + k2 + · · · + kn + n − 1)!
(k1 + 1)! · · · kn !(k1 + 1)(k1 + k2 + 2)! · · · (k1 + · · · + kn−1 + n − 1)!

× A(k1)
1 A(k2)

2 · · · A(kn)
n (λ− Q)−|k|−n−1

'

∑
|k|≥0

c(k1, . . . , kn) A(k1)
1 A(k2)

2 · · · A(kn)
n (λ− Q)−|k|−n−1.

It is useful to keep in mind that since Q has scalar symbol, the product A(k1)
1 A(k2)

2 · · · A(kn)
n has order |a| + |k|(q − 1)

where |a| is the total order of the product A1 · · · An so that A(k1)
1 A(k2)

2 · · · A(kn)
n (λ − Q)−|k|−n−1 has order |a| + |k|

(q − 1)− q (|k| + n + 1) = |a| − |k| − q(n + 1) which decreases as |k| grows.
On the other hand, integrating by parts yields

1
2iπ

∫
f (λ)(λ− Q)−(|k|+n+1) dλ =

1
2iπ(|k| + n)!

∫
f (|k|+n)(λ)(λ− Q)−1 dλ

=
1

(|k| + n)!
f (|k|+n)(Q).

For any operator C chosen as in the statement of the proposition, this yields

fn(Q + θ)(A1 ⊗ · · · ⊗ An)C
−1

=
1

2iπ

∫
f (λ)Rn(λ, Q + θ)(A1 ⊗ · · · ⊗ An) dλ · C−1

'

∑
|k|≥0

c(k)

(|k| + n)!
A(k1)

1 · · · A(kn)
n

1
2iπ

∫
f (λ)(λ− Q)−|k|−n−1 dλ · C−1

'

∑
|k|≥0

c(k)

(|k| + n)!
A(k1)

1 · · · A(kn)
n f (|k|+n)(Q)C−1.

Since by assumption the order of A(k1)
1 · · · A(kn)

n f (|k|+n)(Q)C−1 decreases as |k| grows, it follows that

fn(Q + θ)(A1 ⊗ · · · ⊗ An) ∼

∑
|k|≥0

c(k)

(|k| + n)!
A(k1)

1 · · · A(kn)
n f (|k|+n)(Q),

which ends the proof of the theorem. �

Corollary 1. Let Q ∈ C`(M, E) be an admissible elliptic operator with spectral cut φ and scalar leading symbol.
The quantised complex power of Q is well defined for Re(z) > 0 and for any A1, . . . , An ∈ C`(M, E) we have

(Q + θ)−z (A1 ⊗ · · · ⊗ An) ∼

∑
|k|≥0

(−1)|k|+nc(k)Γ (z + |k| + n)

Γ (z)(|k| + n)!
A(k1)

1 · · · A(kn)
n Q−z−|k|−n .
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Remark 6. The operator A0(Q + θ)−z (A1 ⊗ · · · ⊗ An) coincides with the operator involved in the definition of
〈A0, . . . , An〉z in [14] (see paragraph 4.3) up to a sign and a multiplicative factor Γ (z).

Proof. For any complex number z with positive real part the map f (λ) = λ−z satisfies the assumptions of Theorem 1
(here we take C = 1) so that the quantised complex power of Q reads

(Q + θ)−z(A1 ⊗ · · · ⊗ An) ∼

∑
k≥0

c(k)(−z)(−z − 1) · · · (−z − (|k| + n − 1))
(|k| + n)!

A(k1)
1 · · · A(kn)

n Q−z−(|k|+n)

∼

∑
|k|≥0

(−1)|k|+n c(k)(z + |k| + n − 1) · · · (z + 1)z
(|k| + n)!

A(k1)
1 · · · A(kn)

n Q−z−(|k|+n)

∼

∑
|k|≥0

(−1)|k|+n c(k)Γ (z + |k| + n)

Γ (z)(|k| + n)!
A(k1)

1 · · · A(kn)
n Q−z−(|k|+n),

which proves the lemma. �

Corollary 2. Let Q ∈ C`(M, E) be an elliptic operator with positive order and positive leading symbol, for any
A1, . . . , An ∈ C`(M, E) we have for any ε > 0

e−ε (Q+θ) (A1 ⊗ · · · ⊗ An) = (−ε)n
∫
∆n

e−εu0 Q A1 · · · e−εun−1 Q Ane−εun Qdu1 · · · dun

∼

∑
|k|≥0

(−1)|k|+nc(k)ε|k|+n

(|k| + n)!
A(k1)

1 · · · A(kn)
n e−εQ,

where ∆n := {(u0, . . . , un), ui ≥ 0,
∑n

i=0 ui = 1} is the unit simplex.

Remark 7. • The operator A0e−ε (Q+θ) (A1 ⊗ · · · ⊗ An) coincides with the operators involved in JLO traces used
in [14] (see Appendix A) up to a multiplicative factor (−1)nε

n
2 .

• If M is a spin manifold and E the spinor bundle on M , letting Q = D2 with D the Dirac operator, following [28],
one can treat θ + σD as a superconnection form where σ is the grading. The curvature is then given by
R = Q + σ [D, θ] and (see formula (8.1) in [28])

eQ+σ [D,θ ]
=

∑
n≥0

∫
∆n

eu0 Qσ [D, θ] · · · eun−1 Qσ [D, θ]eun Q du1 · · · dun

can be seen as a quantised heat operator up to the fact that one has replaced θ by σ [D, θ].

Proof. Applying Theorem 1 to f (λ) = e−ε λ (here we take C = e−εQ), the quantised heat operator of Q yields

e−ε (Q+θ) (A1 ⊗ · · · ⊗ An) ∼

∑
|k|≥0

(−1)|k|+nc(k) ε|k|+n

(|k| + n)!
A(k1)

1 · · · A(kn)
n e−εQ .

As for the second statement in the corollary, clearly,

e−ε(Q+θ)(A1 ⊗ · · · ⊗ An) = (−ε)ne−εQ+θ (A1 ⊗ · · · ⊗ An)

so it suffices to prove that

eQ+θ (A1 ⊗ · · · ⊗ An) =

∫
∆n

eu0 Q A1 · · · eun−1 Q Aneun Qdu.

and then substitute −εQ for Q.
The following derivation is taken from [14]. Using the Cauchy integral as a contour integral along the imaginary

axis we write

eQ+θ (A1 ⊗ · · · ⊗ An) =
1

2iπ

∫
eλ(λ− Q)−1 A1 · · · (λ− Q)−1 An(λ− Q)−1dλ
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=
1

2π

∫
+∞

−∞

eiν(iν − Q)−1 A1 · · · (iν − Q)−1 An(iν − Q)−1 dλ

= lim
δ→0

1
2π

∫
+∞

−∞

eiν f̂ δ0 (ν) · · · f̂ δn (ν)dν

= lim
δ→0

( f δ0 ? · · · ? f δn )(1)

=

∫
+∞

−∞

· · ·

∫
+∞

−∞

g0(1 − u1)g1(u1 − u2) · · · gn−1(un−1 − un)gn(un)du1 · · · dun

=

∫
∆n

eu0 Q A1 · · · An−1eun−1 Q Aneun Qdu1 · · · dun,

where f δj is the convolution of g j (t) = A j et Q (here A0 = 1) if t ≥ 0 and g j (t) = 0 if t < 0 with δ−1φ(δ−1
·) some

compactly supported bump function. �

2.3. Transformation under the adjoint action of C`(M, E)

An operator C ∈ C`(M, E) induces an adjoint action:

C`(M, E) → C`(M, E)
A 7→ adC (A) := [C, A].

The following proposition shows how a quantised resolvent of level n transforms to a quantised resolvent of level
n + 1 under the adjoint action.

Proposition 4. For any A1, . . . , An ∈ C`(M, E) and any C ∈ C`(M, E), for any Q ∈ C`(M, E) and any λ outside
the spectrum of Q,

(adC Rn(λ, Q + θ))(A1 ⊗ · · · ⊗ An) := adC (Rn(λ, Q + θ)(A1 ⊗ · · · ⊗ An))

−

n∑
i=1

Rn(λ, Q + θ)(A1 ⊗ · · · ⊗ adC Ai ⊗ · · · ⊗ An)

=

n∑
j=0

Rn+1(λ, Q + θ)(A1 ⊗ · · · ⊗ A j ⊗ adC (Q)⊗ A j+1 ⊗ · · · ⊗ An).

Proof. Since the adjoint action is a derivation adC (AB) = adC (A)B + AadC (B) and since

adC R(λ, Q) = R(λ, Q)adC Q R(λ, Q),

we have

(adC Rn(λ, Q + θ))(A1 ⊗ · · · ⊗ An)

=

n∑
j=0

R(λ, Q)A1 R(λ, Q) · · · A j adC R(λ, Q)A j+1 R(λ, Q) · · · R(λ, Q)An R(λ, Q)

=

n∑
j=0

R(λ, Q)A1 R(λ, Q) · · · A j R(λ, Q)adC (Q)R(λ, Q)A j+1 R(λ, Q) · · · R(λ, Q)An R(λ, Q),

leading to the statement of the proposition. �

Performing a Cauchy integral leads to the following result.

Corollary 3. Let Q ∈ E``adm
ord>0(M, E) have spectral cut Lφ and positive order q. For any A1, . . . , An ∈ C`(M, E)

and any C ∈ C`(M, E)

(adC fn(Q + θ))(A1 ⊗ · · · ⊗ An) =

n∑
j=0

fn+1(Q + θ)(A1 ⊗ · · · ⊗ A j ⊗ adC (Q)⊗ A j+1 ⊗ · · · ⊗ An)
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where f is any complex valued function defined on the contour Cφ around the spectrum of Q and such that

ρ 7→
f (ρeiφ)

ρ j lies in L1(]1,∞[) for any j ∈ N.

Combining Corollary 3 applied to f (λ) = e−ελ with Corollary 2 yields back the following well-known formula.

Corollary 4. Let A1, . . . , An ∈ C`(M, E) and let Q ∈ Ell(M, E) have positive leading symbol then for any
C ∈ C`(M, E) and any ε > 0

adC (e−ε(Q+θ))(A1 ⊗ · · · ⊗ An) = (−ε)nadC

[∫
∆n

due−εu0 Q A1 · · · e−εun Q An

]
= (−ε)n

n+1∑
j=1

∫
∆n

due−εu0 Q A1 · · · A j−1e−εu j−1 QadC Qe−εu j Q

× A j e−εu j+1 Q
· · · e−εun Q An .

2.4. Varying the operator Q

The following elementary result will be useful to control the variation of quantised weighted traces when the weight
Q varies.

Proposition 5. Let Q(b) ∈ C`(M, E) be a differentiable family of classical pseudodifferential operators
parametrised by a manifold B and let A1, . . . , An ∈ C`(M, E). Given a point b ∈ B, for any λ outside the spectrum
of Q(b) with b in some neighborhhod of a point b0 ∈ B,

dRn(λ, Q + θ)(b0) (A1 ⊗ · · · ⊗ An)

=

n∑
j=1

Rn+1(λ, Q(b0)+ θ)(A1 ⊗ · · · ⊗ A j−1 ⊗ dQ(b0)⊗ A j ⊗ · · · ⊗ An).

Proof. This follows from the identity

dR(λ, Q) = R(λ, Q)dQ R(λ, Q)

combined with the Leibniz rule. �

Performing a Cauchy integral along the contour Cφ yields the following result.

Corollary 5. Let Q(b) ∈ Elladm
ord>0(M, E), b ∈ B be a differentiable family with fixed positive order q and a given

common spectral cut Lφ . For any non negative integer n and any A1, . . . , An ∈ C`(M, E),

(d fn(Q + θ))(A1 ⊗ · · · ⊗ An) =

n∑
j=1

fn+1(Q + θ) (A1 ⊗ · · · ⊗ A j ⊗ dQ ⊗ A j+1 ⊗ · · · ⊗ An)

where f is any complex valued function defined on the contour Cφ around the spectrum of Q and such that

ρ 7→
f (ρeiφ)

ρ j lies in L1(]1,∞[) for any j ∈ N.

Remark 8. When n = 0 this reads

d f (Q)(A) = f1(Q, θ)(A ⊗ d Q).

Combining Corollary 5 applied to f (λ) = e−ελ with Corollary 2 yields back the following well-known formula.

Corollary 6. Let A1, . . . , An ∈ C`(M, E) and let Q(b), b ∈ B be a differentiable family in E``(M, E) of operators
with positive leading symbol parametrised by a manifold B then
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d(e−ε(Q+θ)(A1 ⊗ · · · ⊗ An))

= (−ε)nd
[∫

∆n

due−εu0 Q A1 · · · e−εun Q An

]
= (−ε)n

n+1∑
j=1

∫
∆n

due−εu0 Q A1 · · · A j−1e−εu j−1 QdQe−εu j Q A j e−εu j+1 Q . . . e−εun Q An .

3. Quantised regularisation procedures

A regularisation procedure on C`(M, E) is a map

R : C`(M, E) → A(W,C`(M, E))

A 7→ A(w)

with values in the space A(W,C`(M, E)) of analytic maps with values in C`(M, E), defined on a subset W ⊂ C
containing R+ satisfying the following requirements

1. A(w) is trace-class for w with large enough real part,
2. A(0) = A,
3. if it is finite, the order of A(w) has non vanishing derivative at 0.

We focus here on regularisation procedures of the type

RQ, f (A)(w) = θ f (w)(Q)(A) = A f (w)(Q)

where f (w)(Q) :=
1

2iπ

∫
f (w)(λ)(λ− Q)−1 dλ for some Q ∈ C`(M, E) lies in A(W,C`(M, E)).

Applying the (second) quantisation procedure described previously, we can quantise such a regularisation
procedure to build

RQ, f
• : C•(M, E) → A(W,C`(M, E))

defined by θ RQ, f
0 (A)(w) = A f (w)(Q) and for positive integer n by

RQ+θ, f
n : Cn((M, E)) → A(W,C`(M, E))

A0 ⊗ · · · ⊗ An 7→ (w 7→ θ fn(w)(Q + θ)(A0 ⊗ · · · ⊗ An)).

Two well-known examples are

1. when Q is an admissible elliptic operator, the zeta regularisation defined for z in W = C with f (z)(λ) = λ−z by

RQ,ζ
: C`(M, E) → Hol(C,C`(M, E))

A 7→ (z 7→ A (Q + πQ)
−z)

with Q of order q > 0, πQ the orthogonal projection onto the kernel of Q.
2. When Q has positive leading symbol, the heat-kernel regularisation is defined for ε in W = R+

∪ {0} with
f (ε)(λ) = e−ελ by

RQ,H K
: C`(M, E) → C∞(R+

∪ {0},C`(M, E))

A 7→ (ε 7→ A e−εQ).

We investigate their quantised versions

RQ,ζ
• := RQ+θ,ζ

; RQ,H K
• := RQ+θ,H K

and study the corresponding quantised regularised traces.
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3.1. Quantised zeta regularisation

Let Q ∈ C`(M, E) be an admissible elliptic operator with spectral cut φ with positive order q. Setting
f (z)(λ) = λ−z , the zeta regularisation ζ Q,ζ can be quantised to RQ+θ,ζ

• : C•(M, E) → Hol(C`(M, E)) defined
byRQ+θ,ζ

0 = RQ,ζ and for positive integer n by

RQ+θ,ζ
n : Cn(M, E) → Hol(C`(M, E))

A0 ⊗ A1 ⊗ · · · ⊗ An 7→ (z 7→ A0 f•(z)(Q + πQ + θ)(A1 ⊗ · · · ⊗ An))

so that

RQ+θ,ζ
n (A0 ⊗ A1 ⊗ · · · ⊗ An) = A0 (Q + πQ + θ)−z(A1 ⊗ · · · ⊗ An)

=
1

2iπ

∫
λ−z A0(λ− (Q + πQ + θ))−1(A1 ⊗ · · · ⊗ An)

=
1

2iπ

∫
λ−z A0(λ− (Q + πQ))

−1 A1 · · · An (λ− (Q + πQ))
−1.

For simplicity, in the following we assume that Q is invertible. The results can then be easily extended to the general
case by replacing Q with Q + πQ .

The subsequent lemma summarises a well-known result (see e.g. [13,17,18,27,33]).

Lemma 2. Let A ∈ C`(M, E) of order a and Q ∈ C`(M, E) an admissible elliptic operator with positive order q.
Then the map z 7→ tr(RQ,ζ (A))(z) := tr(AQ−z) which is holomorphic on the half plane Re(z) > a+d

q where d is the

dimension of M, extends to a meromorphic map tr(RQ,ζ (A)) |mer with simple poles. The pole at 0 is proportional to
the noncommutative residue:

Resz=0tr(RQ,ζ (A)) |mer
=

1
q

res(A).

The finite part at z = 0

trQ(A) := fpz=0(tr(AQ−z))

which in general is non local, boils down to a local expression when A is a differential operator [27]:

trQ(A) = −
1
q

res(A log Q).

Theorem 2. Let Q ∈ C`(M, E) be an elliptic operator with scalar leading symbol. For any A0, . . . , An ∈ C`(M, E),
n > 0, there exists some K > 0 such that the expression

RQ+θ,ζ
n (A0 ⊗ A1 ⊗ · · · ⊗ An)(z)−

K∑
|k|=0

c(k)(−1)|k|+nΓ (z + |k| + n)

Γ (z)(|k| + n)!
A0 A(k1)

1 · · · A(kn)
n Q−z−(|k|+n)

is trace-class for Re(z) > d−K+|a|

q − n + 1 and the map z 7→ tr(RQ+θ,ζ
n (A0 ⊗ A1 ⊗ · · · ⊗ An)(z)) extends to a

meromorphic map tr(RQ+θ,ζ
n (A0 ⊗ A1 ⊗ · · · ⊗ An)) |

mer defined on the whole plane. Its pole at z = 0 vanishes and
its limit at z = 0 is given by a local expression:

tr(RQ+θ,ζ
n (A0 ⊗ A1 ⊗ · · · ⊗ An)) |

mer
z=0 = lim

z→0
tr(RQ+θ,ζ

n (A0 ⊗ A1 ⊗ · · · ⊗ An)) |
mer

=

∑
0≤|k|≤|a|−nq+d

(−1)|k|+nc(k)

q(|k| + n)
res(A0 A(k1)

1 · · · A(kn)
n Q−(|k|+n)), (9)

where as before, d is the dimension of M.
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Remark 9. Since Q has scalar leading symbol, the operator A(k) has order a + k(q − 1) where a is the order of A
and the operator A0 A(k1)

1 · · · A(kn)
n Q−(|k|+n) has order |a|+ |k| (q − 1)− (|k|+ n)q = |a|− |k|− nq which decreases

as |k| increases. Since the noncommutative residue vanishes for operators of order < −d where d is the underlying
dimension of the manifold M , only a finite number (|k| ≤ |a| − nq + d) of non vanishing residues arise in (9).

Proof. From Corollary 1 we have

RQ+θ,ζ
n (A0 ⊗ A1 ⊗ · · · ⊗ An)(z) ∼

∑
|k|≥0

c(k)(−1)|k|+n Γ (z + |k| + n)

Γ (z) (|k| + n)!
A0 A(k1)

1 · · · A(kn)
n Q−z−(|k|+n).

The operator A0 A(k1)
1 · · · A(kn)

n Q−(|k|+n)−z of order |a| − |k| − nq − qz is trace class for Re(z) > |a|−|k|+d
q − n.

Since the operators A(ki )
i are classical its trace, which defines a holomorphic function on this half plane, extends to a

meromorphic function on the whole complex plane with simple poles.
For positive integer n

Γ (z + |k| + n)

Γ (z) (|k| + n)!
∼0

z

|k| + n

so that by Lemma 2,

lim
z→0

Γ (z + |k| + n)

Γ (z)(|k| + n)!
tr(A0 A(k1)

1 · · · A(kn)
n Q−z−(|k|+n)) =

res(A0 A(k1)
1 · · · A(kn)

n Q−(|k|+n))

q(|k| + n)
.

Hence, as z → 0, tr(RQ+θ,ζ
n (A0 ⊗ A1 ⊗ · · · ⊗ An)(z)) converges to

tr(RQ+θ,ζ
n (A0 ⊗ A1 ⊗ · · · ⊗ An)(z))|z=0

=

∑
0≤|k|≤|a|−nq+d

(−1)|k|+n c(k)

q(|k| + n)
res(A0 A(k1)

1 · · · A(kn)
n Q−(|k|+n)),

which is a local expression as a finite linear combination of noncommutative residues. �

Definition 7. We call the value at z = 0 of the meromorphic extension

trQ+θ
n (A0 ⊗ · · · ⊗ An) := tr(Rζn(A0 ⊗ A1 ⊗ · · · ⊗ An)(z)) |

mer
z=0

the quantised Q-weighted trace of A0 ⊗ · · · ⊗ An ∈ Cn(M, E).7

The above theorem can be reformulated as follows.

Corollary 7. Given an elliptic operator Q ∈ C`(M, E) with scalar leading symbol, for any positive integer n the
quantised Q-weighted trace of A0 ⊗· · ·⊗ An ∈ C`n(M, E) is local as a finite linear combination of noncommutative
residues:

trQ+θ
n (A0 ⊗ · · · ⊗ An) =

∑
0≤|k|≤|a|−nq+d

(−1)|k|+n c(k)

q(|k| + n)
res(A0 A(k1)

1 · · · A(kn)
n Q−(|k|+n)). (10)

For n = 0 we have

trQ
0 (A) = trQ(A)

which in general is non local.

Remark 10. Applying this to the case of a spin manifold with E the spinor bundle and Q = D2 the Laplacian of the
associated Dirac operator D we get a local formula similar to that obtained for the Chern character by Connes and

7 It differs from the weighted trace cochains defined in [24].
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Moscovici (see Theorem II.1 of [7]) which is not surprising in view of Remark 7 which relates the Chern character in
cyclic cohomology with quantised weighted traces:

trQ+θ
n (A0 ⊗ [D, A1] ⊗ · · · ⊗ [D, An])

=

∑
0≤|k|≤|a|−nq+d

(−1)|k|+n c(k)

2(|k| + n)
res(A0 [D, A1]

(k1) · · · [D, An]
(kn) Q−(|k|+n)).

3.2. Quantised heat-kernel regularisation

Let us now assume that Q is elliptic with positive leading symbol so that e−εQ defines a smoothing operator for
any ε > 0. The heat-kernel regularisation procedure:

RQ,H K (A)(ε) := Ae−εQ, ε > 0

can be quantized toRQ+θ,H K
• on C•(M, E) defined by

RQ+θ,H K
n (A0 ⊗ · · · ⊗ An)(ε) := A0 fn(ε)(Q)(A1 ⊗ · · · ⊗ An), ε > 0

with f•(ε)(Q + θ) the quantised version of f (ε)(Q) := e−ε Q .

Proposition 6. Let Q ∈ C`(M, E) be an elliptic operator with scalar leading symbol. For any ε > 0 the expression
A0 e−ε(Q+θ)(A1, . . . , An) is smoothing for any A0, . . . , An ∈ C`(M, E) and for any positive integer n

RQ+θ,H K
n (A0 ⊗ · · · ⊗ An)(ε) = (−ε)n

∫
∆n

A0 e−u0εQ
· · · An e−εun Qdu

∼

∑
|k|≥0

(−1)|k|+nc(k) ε|k|+n

(|k| + n)!
A0 A(k1)

1 · · · A(kn)
n e−εQ .

Proof. The fact that A0 e−ε(Q+θ)(A1, . . . , An) is smoothing together with the first identity follow from the first
identity in Corollary 2. The second expression follows from the second identity in Corollary 2. �

The following lemma, which we quote from [12] (see also Lemma 9.34 in [3], formula (3.19) in [18] (here k = 0) and
formula (1.2) in [1]) is useful to compare heat-kernel and zeta regularisation.

Lemma 3. Let f ∈ C∞(]0,∞[) with asymptotic expansion for small t of the form:

f (t)∼0

∞∑
j=0

a j t
j−α

q +

∞∑
j=0, j−α

q ∈Z

b j t
j−α

q log t +

∞∑
j=0

c j t
j (11)

for some real numbers α, a j , b j , c j , j ∈ N ∪ {0} and a positive real number q. Let us moreover assume that it decays
exponentially at infinity. Then the Mellin transform:

M( f )(z) :=
1

Γ (z)

∫
∞

0
t z−1 f (t)dt

is a meromorphic function with simple pole at z = 0 and whenever α is a non negative integer we have

M( f )(z) = −
bα
z

+ fpt=0 f (t)− bαγ + o(1)

where γ is the Euler constant and fpt=0 f (t) the constant term in the asymptotic expansion (11). In all other cases,
the map z 7→M( f )(z) is holomorphic at z = 0.

In general we have

fpz=0M( f )(z) = fpt=0 f (t)− γ Resz=0M( f )(z). (12)
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Although ordinary heat-kernel regularised traces differ from zeta-regularised traces by a term proportional to the
noncommutative residue, the following theorem shows that higher heat-kernel quantised regularised traces coincide
with quantised zeta regularised traces.

Theorem 3. Let Q ∈ C`(M, E) be an elliptic operator with positive order and positive leading symbol. Then, for
any A ∈ C`(M, E)

trQ(A) = fpε=0tr(RQ,H K (A)(ε))−
γ

q
res(A), (13)

so that ordinary heat-kernel and zeta regularised traces coincide on operators with vanishing residue. In particular,
they coincide on differential operators.

For any non negative integer n, the map ε 7→ tr(RQ,H K
n (A0 ⊗ · · · ⊗ An)(ε)) has an asymptotic Laurent expansion

around 0 in fractional powers of ε.
Its finite part at ε = 0 coincides with the quantised Q-weighted trace of A0 ⊗ · · · ⊗ An when the Ai ’s and Q are

differential operators or for any large enough integer n, i.e. such that |a| + d < |k| + q n with |a| the total order of
the product A0 · · · An , d the dimension of M. In those cases we have:

fpε→0tr(RQ,H K
n (A0 ⊗ · · · ⊗ An)(ε)) = fpε→0tr(A0e−ε(Q+θ)(A1 ⊗ · · · ⊗ An))

= trQ+θ
n (A0 ⊗ · · · ⊗ An).

Proof. The first part of the theorem follows from (12) applied to f (t) = tr(Ae−t Q) which (see [12], see also [18])
satisfies the assumptions of Lemma 3 with α = a + d , where a is the order of A and q the order of Q. Lemma 2 then
gives the expression of the complex residue Resz=0tr(A Q−z) |mer in terms of the noncommutative residue.

The second part of the statement follows from Lemma 3 applied to

fk(t) := tn+|k| tr(A0 A(k1)
1 · · · A(kn)

n e−t Q)

which also satisfies the assumptions of the lemma.
If the Ai ’s and Q are differential operators, then the pole at 0 of its Mellin transform M( f )(z) vanishes since

the noncommutative residue vanishes on differential operators. The statement of the theorem then follows from (12)
combined with Proposition 6.

As for the general case, since Q has scalar leading symbol, the operator A = A0 A(k1)
1 · · · A(kn)

n has order
|a| + |k|(q − 1) and the constant α in (11) is α = |a| + |k|(q − 1)+ d. Due to the presence of the multiplicative factor
ε|k|+n in Proposition 6, it follows that tr(RQ,H K

n (A0 ⊗ · · · ⊗ An)(ε)) has the same type of asymptotic behaviour with
α replaced by |a| + |k|(q − 1)+ d − q(n + |k|) = |a| − |k| + d − q n so that there is no logarithmic divergent term
and hence no complex residue for large n i.e. when |a| + d < |k| + q n. The result then follows from (12) combined
with Proposition 6. �

4. Anomalies for quantised regularised traces

Regularisation procedures give rise to anomalies due to the presence of the weight Q. Roughly speaking, we show
that the anomaly of a quantised regularised trace of level n is a finite linear combination of quantised regularised
traces of level n + 1. Since quantised regularised traces of any positive level n are local as finite linear combinations
of noncommutative residues, so is the anomaly of any quantised regularised trace including those of level 0.
We investigate different types of anomalies, the behaviour under the adjoint action of C`(M, E), the Hochschild
coboundary, and the variation when the weight Q varies.

4.1. Behaviour under the adjoint action

Let Q ∈ E``adm
ord>0(M, E) and C ∈ C`(M, E). The adjoint action adC on C`(M, E) induces a transformation of

the corresponding ζ -regularisation procedure, namely

adC (RQ+θ,ζ
• )(z) := adC

(
θ (Q + πQ + θ)−z) .

The following result shows how the adjoint action of C`(M, E) sends quantised ζ -regularised traces of level n to
quantised regulalarised ζ -traces of level n + 1.
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Theorem 4. Let Q ∈ E``adm
ord>0(M, E) have scalar leading symbol. Then, for any C ∈ C`(M, E) and any

A0, . . . , An ∈ C`(M, E), the operator adC (RQ+θ,ζ
• )(z)(A0 ⊗ · · · ⊗ An) is trace-class for any complex number z

with real part large enough and the holomorphic map z 7→ tr(adC (RQ+θ,ζ
• )(z)(A0 ⊗ · · · ⊗ An)) defined on the

corresponding half plane extends to a meromorphic map

z 7→ tr(adC (RQ+θ,ζ
• )(z)(A0 ⊗ · · · ⊗ An)) |

mer

defined on the whole complex plane. We denote the value at z = 0 of the meromorphic extension by:

(adC trQ+θ
• )(A0 ⊗ · · · ⊗ An) := tr(adC (RQ+θ,ζ

• )(z)(A0 ⊗ · · · ⊗ An)) |
mer
z=0 .

Furthermore,

(adC trQ+θ
• )(A0 ⊗ · · · ⊗ An) =

n∑
j=0

trQ+θ (A0 ⊗ · · · ⊗ A j ⊗ adC (Q)⊗ A j+1 ⊗ · · · ⊗ An).

Proof. Applying Corollary 3 to f (λ) = λ−z , by definition ofRQ+θ,ζ
• we get

adC (RQ+θ,ζ
• )(z)(A0 ⊗ · · · ⊗ An) = adC (θ (Q + πQ + θ)−z)(A0 ⊗ · · · ⊗ An)

=

n∑
j=0

θ (Q + πQ + θ)−z(A0 ⊗ · · · ⊗ A j ⊗ adC (Q)⊗ A j+1 ⊗ · · · ⊗ An)

=

n∑
j=0

RQ+θ,ζ
n+1 (z)(A0 ⊗ · · · ⊗ A j ⊗ adC (Q)⊗ A j+1 ⊗ · · · ⊗ An).

By Theorem 2, for any complex number z with real part of z large enough, each of the operators RQ+θ,ζ
n+1 (z)(A0 ⊗

· · · ⊗ A j ⊗ adC (Q) ⊗ A j+1 ⊗ · · · ⊗ An) is trace class and each of the maps z 7→ tr(RQ+θ,ζ
n+1 (z)(A0 ⊗ · · · ⊗ A j ⊗

adC (Q)⊗ A j+1 ⊗ · · · ⊗ An)) extends to a meromorphic map. As a result there is a meromorphic extension

z 7→ tr(adC (RQ+θ,ζ
• )(z)(A0 ⊗ · · · ⊗ An)) |

mer

defined on the whole plane, the finite part of which we denote by (adC trQ+θ
• )(A0 ⊗ · · · ⊗ An). The statement of the

theorem then follows. �

The locality of quantised weighted traces of any positive level n then provides the locality of the transformed
regularised traces under the adjoint action.

Corollary 8. For any A0, . . . , An ∈ C`(M, E), for any Q ∈ E``adm
ord>0(M, E) with scalar leading symbol and for

any C ∈ C`(M, E), the transformed trace under the adjoint action (adC trQ+θ
n )(A0 ⊗ · · · ⊗ An) is local as a linear

combination of noncommutative residues:

(adC trQ+θ
n )(A0 ⊗ · · · ⊗ An) =

n∑
j=0

∑
0≤|k|≤|a|−nq−q+d

(−1)|k|+n+1 c(k)

q(|k| + n + 1)

× res(A0 A(k1)
1 · · · A

(k j )

j C (k j+1) A
(k j+2)

j+1 · · · A(kn)
n Q−(|k|+n+1)).

Proof. The result follows from Theorem 4 combined with formula (10). �

4.2. Hochschild coboundaries

The coboundary of an ordinary ζ -regularised trace δ(trQ)(A, B) := trQ([A, B]) generalises to the Hochschild
coboundary for higher level quantised ζ -regularised trace cochains:

(btrQ+θ
n )(A0 ⊗ · · · ⊗ An+1) :=

∑
j=0

(−1) j trQ+θ
n (A0 ⊗ · · · ⊗ A j A j+1 ⊗ · · · ⊗ An+1)

+ (−1)n+1trQ+θ
n (An+1 A0 ⊗ · · · ⊗ A j ⊗ · · · ⊗ An). (14)
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The following result shows that the Hochschild coboundary of a quantised ζ -regularised trace is a finite linear
combination of quantised ζ -regularised traces of the same level or higher.

Proposition 7. Let Q ∈ Elladm
ord>0(M, E) have scalar leading symbol. For any non negative integer p and any

A0, . . . , A2p+1 ∈ C`(M, E), on the one hand,

(b trQ+θ
2p ) (A0 ⊗ · · · ⊗ A2p+1) =

p∑
j=0

trQ+θ
2p+1 (A0 ⊗ · · · ⊗ A2 j ⊗ [Q, A2 j+1] ⊗ A2 j+2 ⊗ · · · ⊗ A2p+1).

On the other hand,

(b trQ+θ
2p+1)

(
A0 ⊗ · · · ⊗ A2p+2

)
=

p∑
j=0

trQ+θ
2p+2 (A0 ⊗ · · · ⊗ A2 j ⊗ [Q, A2 j+1] ⊗ A2 j+2 ⊗ · · · ⊗ A2p+2)

+ trQ+θ
2p+1 (A2p+2 A0 ⊗ · · · ⊗ A2p+1).

Proof. Following [14] (see e.g. Lemma 5.2), we first check that

Rn(λ, Q + θ) (A0 ⊗ · · · ⊗ A j−1 A j ⊗ · · · ⊗ An+1)− Rn(λ, Q + θ) (A0 ⊗ · · · ⊗ A j A j+1 ⊗ · · · ⊗ An+1)

= Rn+1(λ, Q + θ) (A0 ⊗ · · · ⊗ [Q, A j ] ⊗ · · · ⊗ An+1),

which easily follows from the identity

A j−1(λ− Q)−1
[Q, A j ](λ− Q)−1 A j+1 = A j−1(λ− Q)−1 A j A j+1 − A j−1 A j (λ− Q)−1 A j+1.

The result then follows using (14). �

As a consequence, the Hochschild coboundary of a quantised ζ -regularised trace is local.

Theorem 5. Let Q ∈ Elladm
ord>0(M, E) have scalar leading symbol. For any non negative integer p and any

A1, . . . , A2p+2 ∈ C`(M, E), the Hochschild coboundary of a ζ -regularised trace is a finite linear combination
of noncommutative residues.

(b trQ+θ
2p )(A0 ⊗ · · · ⊗ A2p+1) =

p∑
j=0

∑
0≤|k|≤|a|−2p q−q+d

(−1)|k|+1 c(k)

q(|k| + 2p + 1)

× res(A0 A(k1)
1 · · · A

(k2 j+1+1)
2 j+1 · · · A

(k2p+1)

2p+1 Q−(|k|+2p+1)),

and

(b trQ
2p+1)

(
A0 ⊗ · · · ⊗ A2p+2

)
=

p∑
j=1

∑
0≤|k|≤|a|−2pq−2q+d

(−1)|k|
c(k)

q(|k| + 2p + 2)

× res(A0 A(k1)
1 · · · A

(k2 j+1+1)
2 j+1 · · · A

(k2p+2)

2p+2 Q−(|k|+2p+2))

+

∑
0≤|k|≤|a|−2pq−q+d

(−1)|k|+1 c(k)

q(|k| + 2p + 1)

× res(A2p A0 A(k1)
1 · · · A

(k2p−1)

2p−1 Q−(|k|+2p+1)).

Proof. This follows from Proposition 7 combined with formula (10). The locality then follows from the locality of
the noncommutative residue. �

Remark 11. When p = 0 we get that

btrQ(A ⊗ B) =

∑
0≤k≤a−q+d

(−1)k+1

q(k + 2)
res(AB(k+1) Q−(k+2)).
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4.3. Variation of the weight

A third type of anomaly arises from letting the weight vary. Let Q(b), b ∈ B be a differentiable family in
E``adm

ord>0(M, E) of fixed order q > 0 parametrised by a manifold B.

Theorem 6. Let Q(b), b ∈ B be a differentiable family parametrised by a manifold B in E``adm
ord>0(M, E) with

scalar leading symbol and fixed order q > 0. Then, for any fixed operators A0, . . . , An ∈ C`(M, E), the
operator d(RQ+θ,ζ

• )(z)(A0 ⊗ · · · ⊗ An) is trace-class for real part of z large enough and the holomorphic map
z 7→ tr(d(RQ+θ,ζ

• )(z)(A0 ⊗ · · · ⊗ An)) defined on the corresponding half plane extends to a meromorphic map

z 7→ tr(d(RQ+θ,ζ
• )(z)(A0 ⊗ · · · ⊗ An)) |

mer

defined on the whole complex plane. This meromorphic extension turns out to be holomorphic at z = 0 and we denote
its value at 0 by:

(dtrQ+θ
• )(A0 ⊗ · · · ⊗ An) := tr(d(RQ+θ,ζ

• )(z)(A0 ⊗ · · · ⊗ An)) |
mer
z=0 .

Furthermore, exterior differentials of quantised ζ -regularised traces of level n are finite linear combinations of
quantised ζ -regularised traces of level n + 1. For any non negative integer n:

(dtrQ+θ
n )(A0 ⊗ · · · ⊗ An) =

n∑
j=0

trQ+θ
n+1 (A0 ⊗ · · · ⊗ A j ⊗ dQ ⊗ A j+1 ⊗ · · · ⊗ An)

for any A0, . . . , An ∈ C`(M, E).

Proof. This follows from Corollary 5 applied to f (λ) = λ−z combined with Theorem 2. �

As a result, the exterior differentials of quantised ζ -regularised traces are local.

Corollary 9. Let Q(b), b ∈ B be a differentiable family in E``adm
ord>0(M, E) of fixed order q > 0 parametrised by a

manifold B. Exterior differentials of quantised ζ -regularised traces of level n are local

dtrQ
n (A0 ⊗ · · · ⊗ An) =

n∑
j=0

∑
0≤|k|≤|a|−nq−q+d

c(k)

q(|k| + n + 1)
(−1)|k|+n+1

× res(A0 A(k1)
1 · · · A

(k j )

j (dQ)(k j+1)A
(k j+2)

j+1 · · · A(kn)
n Q−(|k|+n+1))

for any A0 ⊗ · · · ⊗ An ∈ C•(M, E).

Proof. This follows from Theorem 6 combined with formula (10). �

5. The family index theorem setup

We provide the basic ingredients that enable a generalisation of quantised ζ -regularised traces to a family index
theorem setup and will only sketch the actual extension, referring to [26] for further details. We adopt the notations of
[26] from which we quote some of the preliminary results.

Consider a smooth fibration π : M → B with closed finite dimensional fibre Mb := π−1(b) equipped with a
Riemannian metric gM/B on the tangent bundle T (M/B). Let |Λπ | = |Λ(T ∗(M/B))| be the line bundle of vertical
densities, restricting on each fibre to the usual bundle of densities |ΛMb | along Mb. Let E := E+

⊕ E− be a vertical
Hermitian Z2-graded vector bundle over M and let π∗(E) := π∗(E+) ⊕ π∗(E−) be the graded infinite dimensional

Fréchet bundle with fibre C∞(Mb, Eb ⊗|ΛMb |
1
2 ) at b ∈ B, where Eb is the Z2-graded vector bundle over Mb obtained

by restriction of E . By definition, a smooth section σ of π∗(E) over B is a smooth section of E ⊗ |Λπ |
1
2 over M , so

that σ(b) ∈ C∞(Mb, Eb ⊗ |ΛMb |
1
2 ) for all b ∈ B. More generally, the de Rham complex of smooth forms on B with

values in π∗(E) is defined by:

A(B, π∗(E)) = C∞

(
M, π∗(∧T ∗ B)⊗ E ⊗ |Λπ |

1
2

)
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with ⊗ the Z2-graded tensor product. Let C`(E) denote the infinite-dimensional bundle of algebras with fibre

C`(Eb) = C`(Mb, Eb ⊗|ΛMb |
1
2 ). A section Q ∈ A (B,C`(E)) defines a smooth family of classical pseudodifferential

operators with differential form coefficients parametrised by B. Such an operator valued form Q is locally described
by a vertical symbol

q(x, y, ξ) ∈ C∞

(
(UM ×π UM )× Rn, π∗(ΛT ∗UB)⊗ RN

⊗

(
RN

)∗)
,

where ×π is the fibre product, ξ may be identified with a vertical vector in Tb(M/B), and UM is a local coordinate
neighbourhood of M over which EUM ' UM × RN is trivialised and RN inherits the grading of E . With respect to the
local trivialisation of π∗(E) over UB = π(UM ) one has

A
(

U, π∗(E)|UB

)
' A(U )⊗ C∞

(
Mb0 , E

b0
)

with Mb0 = π−1(b0) relative to a base point b0 ∈ UB , so that q can be written locally over UB as a finite sum of
terms of the form ωk ⊗ q[k], where ωk ∈ Ak(UB) and q[k] ∈ C∞(Ub0 × Rn/{0},RN

× (RN )∗) is a symbol (in
the single manifold sense) of form degree zero. We will work only with local symbols which have the local form∑dimB

k=0 ωk ⊗ q[k], with just one term in each form degree, extending by linearity to general sums. The order of a such
a symbol is defined to be the (dim B + 1)-tuple (q0, . . . , qdim B) with qk the order of the symbol q[k]; for simplicity
we consider the case where qk is constant on B. In accordance with the splitting of the local symbol into form degree
q = q[0] + · · · + q[dim B], the operator

(Qψ)(x) =
1

(2π)n

∫
M/B

d volM/B

∫
Rn

ei(x−y)·ξq(x, y, ξ)ψ(y)dξ,

for ψ with compact support in UM , splits as Q = Q[0] + Q[1] + · · · + Q[dim B], where Q[k] = ωk ⊗ Qk ∈

A(UB, π∗(E)|UB
) in each form degree.

Definition 8. A smooth family Q ∈ A (B,C`(E)) of vertical pseudodifferential operators is elliptic if its form degree
zero component Q[0] is pointwise (with respect to the parameter manifold B) elliptic.

In this case Q has spectral cut θ if Q[0] admits a spectral cut θ . Likewise, it is invertible if Q[0] is invertible. Setting
Q[>0] := Q − Q[0] ∈ A1 (B,C`(E)), for λ outside the spectrum of Q[0]

R(λ,Q) = (λ− Q)−1

=
(
λ− (Q[0] + Q[>0])

)−1

=

dim B∑
k=1

Rk(λ,Q + Θ)(Q[>0], . . . ,Q[>0]) with Q[>0] arising k times. (15)

In particular ((Q − λ)−1)[0] = (Q[0] − λ)−1.
Without giving a detailed description of the analog in this family setup of the constructions carried out in the

ordinary setup, let us however give the basic ingredients that lead to a generalisation of the quantised ζ -regularised
traces to the family setup, using Q as a weight.

Let Q be a smooth family of vertical admissible elliptic invertible ΨDOs , the orders (q0, . . . , qdim B+1) of which
fulfill the assumption

q0 = ord(Q[0]) > 0

and

qk ≤ q0 ∀k ≥ 1. (16)

Under these assumptions one obtains an operator norm estimate in A(B) as |λ| → ∞ in Γθ

‖(λI − Q)−1
‖
(s)
M/B = O(|λ|−1) ∀s ∈ R

where ‖ ·‖
(l)
M/B : A (B,C`(E)) → A(B) is the vertical Sobolev endomorphism norm associated to the vertical metric.
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From there, we can mimic the construction of the quantised resolvent for ordinary pseudodifferential operators and
define the quantised resolvent R(λ,Q) = (λ− (Q + Θ))−1 of Q as well as its quantised complex power (Q + Θ)−z

when Q has a spectral cut where Θ is now the insertion operator Θ(α) = α for all α ∈ A(B, π∗(E)).
As in [26], where ordinary weighted traces were extended to pseudodifferential operator valued forms α ∈

A(B, π∗(E)), quantised weighted traces and noncommutative residues can be extended to pseudodifferential valued
forms αi ∈ A(B, π∗(E)). Theorem 2 applied fibrewise above each fibre b then yields the following statements:

Proposition 8. Let Q ∈ A (B,C`(E)) be a vertical elliptic operator valued even form with scalar leading symbol and
positive order q. For any α1, . . . , αn ∈ A(B, π∗(E)), the operator (Q + πQ[0]

+ Θ)−z(α1 ⊗ · · · ⊗ αn) is trace-class
for real part of z large enough and the map z 7→ tr(Θ (Q + πQ[0]

+ Θ)−z(α0 ⊗ · · · ⊗ αn)) extends to a meromorphic
map z 7→ tr(Θ (Q + πQ[0]

+ Θ)−z(α0 ⊗ · · · ⊗ αn)) |
mer defined on the whole plane. The Q + Θ-weighted trace of

α0 ⊗ · · · ⊗ αn corresponds to its finite part at 0

trQ+Θ
n (α0 ⊗ · · · ⊗ αn) := tr(Θ (Q + πQ[0]

+ Θ)−z(α0 ⊗ · · · ⊗ αn)) |
mer
z=0 .

For any positive integer n, the quantised ζ -trace trQ+Θ
n is local as a linear combination of noncommutative residues:

trQ+Θ
n (α0 ⊗ · · · ⊗ αn) =

∑
0≤|k|≤|a|−nq+d

(−1)|k|+nc(k)

q(|k| + n)

× res
(
α0 ∧ α

(k1)
1 ∧ · · · ∧ α(kn)

n ∧ (Q + πQ[0]
)−(|k|+n)

)
.

Remark 12. With these notations and those of [26] we have trQ(α) = trQ
0 (α).

Since we are interested in the variation of quantised weighted traces under a variation of Q, given a connection A on
A we set for any α0, . . . , αn ∈ A(B, π∗(E)),(

dtrQ+Θ
n

)
(α0 ⊗ · · · ⊗ αn) := d

(
trQ+Θ

n (α0 ⊗ · · · ⊗ αn)
)

−

n∑
j=0

(−1)d0+···+d j trQ+Θ
n

(
α0 ⊗ · · · ⊗ α j−1 ⊗ [A, α j ] ⊗ α j+1 ⊗ · · ·αn

)
. (17)

Theorem 7. Let Q ∈ A (B,C`(E)) be a vertical elliptic operator valued even form with scalar leading symbol and
positive order q. Let A be a superconnexion on π∗E . For any α0, . . . , αn ∈ A(B, π∗(E)) of form degrees d0, . . . , dn
respectively, we have:(

dtrQ
n

)
(α1 ⊗ · · · ⊗ αn) =

n∑
j=0

(−1)|d j | trQ
n

(
α0 ⊗ α1 ⊗ · · · ⊗ α j ⊗ [A,Q] ⊗ α j+1 ⊗ · · · ⊗ αn

)
,

with |d j | = d0 + · · · + d j as before.

Proof. Locally we write A = d + Φ and hence [A, ·] = d + [Φ, ·]. Theorem 6 with Theorem 4 (with C replaced
by an even degree form) both generalise to pseudodifferential valued forms. Combining them (with C replaced by Φ)
yields the result. �

Corollary 10. Let Q ∈ A (B,C`(E)) be a vertical elliptic operator valued even form with scalar leading symbol and
positive order q. Let A be a superconnexion on π∗E . For any α0, . . . , αn ∈ A(B, π∗(E)) of operator orders a0, . . . , an
and form degrees d0, . . . , dn respectively, we have:(

dtrQ
n

)
(α1 ⊗ · · · ⊗ αn) =

n∑
j=0

(−1)|d j |
∑

0≤|k|≤|a|−nq−q+d

(−1)|k|+n+1c(k)

q(|k| + n + 1)

× res
(
α0 ∧ α

(k1)
1 ∧ · · · ∧ α

(k j−1)

j−1 ∧ [A,Q]
(k j ) ∧ α

(k j+1)

j

× ∧ · · · ∧ α(kn)
n ∧ (Q + πQ[0]

)−(|k|+n+1)
)
,

where |a| = a0 · · · + an and as before |d j | := d1 + · · · + d j .
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Proof. As before, we write A = d = Φ and hence [A, ·] = d + [Φ, ·]. Combining Corollary 9 with Corollary 8 (with
C replaced by Φ) yields the result. �

A superconnection [28,2,3] on π∗E adapted to a smooth family of formally self-adjoint elliptic ΨDOs Q ∈

A0 (B,C`q(E)) with odd parity is a classical ΨDOA on A (B, π∗E) of odd parity with respect to the Z2-grading
such that:

A(ω · σ) = dω ∧ σ + (−1)|ω|ω ∧ A(σ ) ∀ω ∈ A(B), σ ∈ A (B, π∗E)

and

A[0] := Q

where A =
∑dim B

i=0 A[i] and A[i] : A∗ (B, π∗E) 7→ A∗+i (B, π∗E).
Theorem 7 easily extends when replacing Q by A2 so that we get back the expected covariance for ordinary A2-

weighted traces:

Corollary 11. Let A be a superconnection on π∗E adapted to a smooth family of formally self-adjoint elliptic ΨDOs
Q ∈ A0 (B,C`q(E)) then the ordinary A2 weighted trace is covariantly constant:

dtrA
2
+Θ

= 0

with the notations of (17).
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